

VC Generation & Migration

START DATE OF THE PROJECT

01/10/2017

DURATION

36 months

The CATALYST project has received funding from the European Unionõs Horizon

2020 research and innovation programme under grant agreement No 768739.
Any dissemination of results must indicate that it reflects only the authorõs view

and that the EASME is not responsible for any use that may be made of the

information it contains.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 1

PROGRAMME NAME ENERGY EFFICIENCY CALL 2016-2017

PROGRAMME IDENTIFIER H2020-EE-2016-2017

TOPIC Bringing to market more energy efficient and integrated data centres

TOPIC IDENTIFIER EE-20-2017

TYPE OF ACTION IA Innovation action

PROJECT NUMBER 768739

PROJECT TITLE CATALYST

COORDINATOR ENGINEERING INGEGNERIA INFORMATICA S.p.A. (ENG)

PRINCIPAL CONTRACTORS SINGULARLOGIC ANONYMI ETAIREIA PLIROFORIAKON SYSTIMATON KAI

EFARMOGON PLIROFORIKIS (SiLO), ENEL.SI S.r.l (ENEL), ALLIANDER NV

(ALD), STICHTING GREEN IT CONSORTIUM REGIO AMSTERDAM (GIT),

SCHUBERG PHILIS BV (SBP), QARNOT COMPUTING (QRN), POWER

OPERATIONS LIMITED (POPs), INSTYTUT CHEMII BIOORGANICZNEJ POLSKIEJ

AKADEMII NAUK (PSNC), UNIVERSITATEA TEHNICA CLUJ-NAPOCA (TUC)

DOCUMENT REFERENCE CATALYST.D3.1.POPS.WP3.v1.1

WORKPACKAGE: WP3

DELIVERABLE TYPE OTHER

AVAILABILITY PU

DELIVERABLE STATE Final/Consolidated/Reviewed/Release Candidate/Quality Checked/Final

DATE OF DELIVERY 10/10/2018

DOCUMENT TITLE VC Generation & Migration

AUTHOR(S) Artemis Voulkidis (POPS), Panagiotis Athanasoulis (SILO)

KEYWORDS Virtual Container, Blockchains, Migration, IT load, Inter-DC, Intra-DC, Follow

the Energy

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 2

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 3

Table of Contents

Table of Contents ... 3

List of Figures ... 6

List of Tables .. 7

List of code listings .. 8

List of Acronyms ... 9

Executive Summary .. 10

1 Introduction .. 11

1.1 Intended Audience .. 11

1.2 Relation to other activities .. 11

1.3 Document overview ... 12

2 CATALYST IT load migration strategy .. 13

2.1 Intra DC Migration ... 14

2.2 Inter DC Migration ... 15

 The role of the IT load marketplace ... 16

3 Design of the virtual containersõ generation component .. 17

3.1 Architecture of the VCG components ... 17

 Ethereum blockchain network ... 17

 VCG API Server .. 18

 VCG Client ... 19

 ETH BC Explorer .. 19

 Integration with other CATALYST components .. 20

3.2 Operation of the VCG components ... 21

4 Implementation of the virtual containersõ generator... 25

4.1 Application programming interface description .. 25

 VCG Data Model .. 25

4.2 Exposed WebSocket interfaces .. 29

4.3 Exposed RESTful interfaces .. 29

 DC management ... 29

4.3.1.1 Register a new DC .. 29

4.3.1.1.1 Indicative service invocation ... 30

4.3.1.2 Get details over a DC ... 30

4.3.1.2.1 Indicative service invocation ... 31

 VC Management ... 31

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 4

4.3.2.1 Register a new VC .. 31

4.3.2.1.1 Indicative service invocation ... 32

4.3.2.2 Get the VC tag after a successful registration.. 32

4.3.2.2.1 Indicative service invocation ... 33

4.3.2.3 Get details about a VC ... 33

4.3.2.3.1 Indicative service invocation ... 34

4.3.2.4 Get the flavour of a VC ... 34

4.3.2.4.1 Indicative service invocation ... 35

4.3.2.5 Get the history of a VC ... 35

4.3.2.5.1 Indicative service invocation ... 35

4.3.2.6 Get the migration status of a VC ... 36

4.3.2.6.1 Indicative service invocation ... 36

 SLA monitoring .. 37

4.3.3.1 Register a VC availability change .. 37

4.3.3.1.1 Indicative service invocation ... 37

4.3.3.2 Register a new VC relocation request ... 38

4.3.3.2.1 Indicative service invocation ... 38

4.3.3.3 Confirm a VC relocation ... 39

4.3.3.3.1 Indicative service invocation ... 39

4.4 Dynamic VCG API Server documentation ... 40

5 Installation requirements .. 42

5.1 Hardware requirements .. 42

5.2 Software requirements ... 43

5.3 Deployment options and installation guidelines ... 44

 Experimentation deployment ... 44

5.3.1.1 Installation guidelines .. 45

5.3.1.1.1 Deploying the Ethereum miner(sealer) nodes. .. 45

5.3.1.1.2 Deploying the VCG API Server ... 46

5.3.1.1.3 Deploying the smart contracts .. 46

5.3.1.1.4 Registering the VCG Clients (DC1 & DC2) .. 47

5.3.1.1.5 Deploying the VCG Clients ... 47

 Recommended deployment ... 47

5.3.2.1 Installation guidelines .. 48

6 Conclusions .. 49

7 References ... 50

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 5

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 6

List of Figures

FIGURE 1 ð OPENSTACK LIVE MIGRATION CONTROL FLOW [9]. ... 15

FIGURE 2 ð ARCHITECTURE OF THE VCG. .. 17

FIGURE 3 ð OVERVIEW OF THE USER INTERFACE OF THE ETH BC EXPLORER. ... 20

FIGURE 4 ð SIMPLIFIED INTERACTIONS DIAGRAM OF THE DC MIGRATION CLIENT. .. 21

FIGURE 5 ð SEQUENCE DIAGRAM OF THE VCG OPERATION... 22

FIGURE 6 ð INSTANCES OF THE VCG ETH BC EXPLORER. ... 24

FIGURE 7 ð SWAGGER INTERFACE OF THE VCG API SERVER. ... 41

FIGURE 8 ð DEFAULT EXPERIMENTATION DEPLOYMENT INSTANCE. .. 45

FIGURE 9 ð CONFIGURATION EXAMPLE OF AN EXPERIMENTATION DEPLOYMENT RESIDING IN AN OPENSTACK VM. 45

FIGURE 10 ð RECOMMENDED DEPLOYMENT ARCHITECTURE. ... 48

file:///C:/Users/arnone/Documents/ENGINEERING/Progetti/01-Attivi%20-%20WLR620/CATALYST/documentation/WP3/D3.1/CATALYST.D3.1.POPS.WP3.v1.0.docx%23_Toc526953897

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 7

List of Tables

TABLE 1 ð CATALYST REQUIREMENTS RELEVANT TO THE VCG COMPONENT [4]. .. 14

TABLE 2 ð EVENTS SUPPORTED BY THE DAPPS OF THE CATALYST ETH BC. ... 21

TABLE 3 ð VC CREATION REQUEST DATA MODEL. .. 25

TABLE 4 ð VC DATA MODEL. ... 25

TABLE 5 ð VC FLAVOUR DATA MODEL. ... 26

TABLE 6 ð PENDING VC MIGRATION REQUEST DATA MODEL. .. 26

TABLE 7 ð PENDING VC MIGRATION (REGISTERED) DATA MODEL. ... 26

TABLE 8 ð PENDING VC MIGRATION CONFIRMATION OF COMPLETION DATA MODEL. .. 26

TABLE 9 ð DC DATA MODEL. .. 26

TABLE 10 ð DC REGISTRATION DATA MODEL. ... 27

TABLE 11 ð VC TAG DATA MODEL. .. 27

TABLE 12 ð VC AVAILABILITY CHANGE REQUEST DATA MODEL. ... 27

TABLE 13 ð TRANSACTION HASH DATA MODEL. .. 27

TABLE 14 ð CHAIN EVENT DATA MODEL. .. 27

TABLE 15 ð VCG CLIENT VC REGISTRATION DATA MODEL. ... 28

TABLE 16 ð VCG CLIENT VC PENDING MIGRATION REGISTRATION DATA MODEL. .. 28

TABLE 17 ð VCG CLIENT REGISTRATION OF VC MIGRATION COMPLETION DATA MODEL. .. 28

TABLE 18 ð VCG CLIENT REQUEST FOR THE REGISTRATION OF A VC AVAILABILITY CHANGE DATA MODEL. 28

TABLE 19 ð VCG CLIENT SUCCESSFUL RESPONSE. ... 28

TABLE 20 ð VCG CLIENT RESPONSE IN THE CASE OF AN EXCEPTION. .. 29

TABLE 21 ð SERVICE ENDPOINT URL OF THE VCG CLIENT WS. ... 29

TABLE 22 ð PARAMETERS REQUIRED FOR GETTING THE DETAILS OVER A DC REGISTRATION. ... 31

TABLE 23 ð PARAMETERS REQUIRED FOR REGISTERING A NEW VC. .. 32

TABLE 24 ð PARAMETERS REQUIRED FOR GETTING A VC TAG. .. 33

TABLE 25 ð PARAMETERS REQUIRED IN ORDER TO RETRIEVE DETAILS OF A PARTICULAR VC. ... 34

TABLE 26 ð PARAMETERS FOR INVOKING THE SERVICE OFFERING THE FLAVOUR OF A VC. ... 35

TABLE 27 ð PARAMETERS FOR INVOKING THE SERVICE OFFERING THE HISTORY OF A VC. .. 35

TABLE 28 ð PARAMETERS FOR INVOKING THE SERVICE OFFERING THE HISTORY OF A VC. .. 36

TABLE 29 ð PARAMTERS REQUIRED FOR REGISTERING A VC AVAILABILITY CHANGE. .. 37

TABLE 30 ð PARAMTERS REQUIRED FOR REGISTERING A VC MIGRATION. .. 38

TABLE 31 ð PARAMTERS REQUIRED FOR REGISTERING A VC MIGRATION. .. 39

TABLE 32 ð HARDWARE REQUIREMENTS FOR RUNNING A WHOLE-IN-ONE DEMONSTRATION OF VCG. 42

TABLE 33 ð HARDWARE REQUIREMENTS FOR INSTALLING AND PROPERLY OPERATING THE VCG RESTFUL AND WS SERVICES.

 .. 42

TABLE 34 ð HARDWARE REQUIREMENTS FOR EACH ETH BC NODE. ... 43

TABLE 35 ð HARDWARE REQUIREMENTS FOR EXECUTING THE VCG CLIENT. .. 43

TABLE 36 ð DOCKER CONTAINERS BROUGHT UP BY THE VCG AUTOMATED DEPLOYMENT SCRIPTS. 46

TABLE 37 ð DETAILS OF THE DOCKERIZED, EMULATED DCS OF THE VCG EXPERIMENTATION DEPLOYMENT. 47

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 8

List of code listings

LISTING 1 ð VC REGISTRATION IN THE ETH BC CONTEXT. .. 23

LISTING 2 ð SIGNATURE OF THE CONTAINERREGISTERED EVENT. ... 23

LISTING 3 ð REGISTERING A DC INTO THE CATALYST VCG BC INFRASTRUCTURE. .. 30

LISTING 4 ð ACQUIRING DETAILS OVER THE REGISTRATION STTSUS OF A DC. .. 31

LISTING 5 ð REGISTERING A NEW VC IN DC1. .. 32

LISTING 6 ð ACQUIRING A VC TAG OUT OF A TRANSACTION HASH. .. 33

LISTING 7 ð ACQUIRING DETAILS RELATED TO A GIVEN VC TAG.. 34

LISTING 8 ð ACQUIRING THE VC FLAVOUR DETAILS RELATED TO A GIVEN VC. .. 35

LISTING 9 ð ACQUIRING THE VC CHAIN EVENT HISTORY OF A GIVEN VC. ... 36

LISTING 10 ð ACQUIRING THE PENDING MIGRATIONS OF A GIVEN VC. ... 37

LISTING 11 ð ACQUIRING THE PENDING MIGRATIONS OF A GIVEN VC. ... 38

LISTING 12 ð REGISTERING A NEW PENDING MIGRATION FOR A GIVEN VC. .. 39

LISTING 13 ð REGISTERING THE COMPLETION OF A MIGRATION FOR A GIVEN VC. ... 40

LISTING 14 ð GETTING THE CODE OF THE DOCKERIZED ETH BC TEST NETWORK. ... 45

LISTING 15 ð BOOTING UP THE DOCKERIZED ETH BC TEST NETWORK. ... 46

LISTING 16 ð GETTING THE CODE OF THE VCG API SERVER. ... 46

LISTING 17 ð BOOTING UP THE DOCKERIZED VCG API SERVER. .. 46

LISTING 18 ð GETTING THE CODE OF THE VCG DAPPS. .. 46

LISTING 19 ð BOOTING UP THE DOCKERIZED VCG API SERVER. .. 47

LISTING 20 ð GETTING THE CODE OF THE VCG DC CLIENT AND BOOTING UP THE RELEVANT CONTAINERS. 47

LISTING 21 ð CEATING A NEW ETH ACCOUNT FOR A CATALYST DC. ... 48

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 9

List of Acronyms

API Application Programming Interface

BC Blockchain

CPU Central Processing Unit

DAPP Distributed Application

DC Data Centre

DCMC Federated DC Migration Controller

DCO Data Centre Operator

ETH Ethereum (blockchain)

GB Giga Byte

GPU Graphics Processing Unit

HDD Hard Disk Drive

IT Information Technology

MB Mega Byte

OS Operating System

PoA Proof of Authority

PoS Proof of Stake

PoW Proof of Work

RAM Random Access Memory

RES Renewable Energy Sources

SLA Service Level Agreement

UTC Coordinated Universal Time

UUID Universal Unique Identifier

VC Virtual Container

VCG Virtual Container Generator

VM Virtual Machine

WS Web Socket

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 10

Executive Summary

This document is the first of a series of three deliverables detailing the activities of CATALYST carried out

towards achieving information technology-related load balancing optimization at federated data centresõ

level. Building upon the technological and research outcomes of the FP7 projects GEYSER and DOLFIN,

CATALYST targets at upscaling and further maturing the data centresõ federation load balancing, rendering

appropriate for adoption by the relevant market players (data centres and Utilities, mainly).

Under such a market perspective, trust among data centres is not taken for granted but should, rather,

emerge as a result of safe and secure design of the technical solution of CATALYST. The consideration of

federated data centres of different administrative domains further strengthens the need for a design that

will guarantee that the load data shared among data centres are untamperable.

Considering the above, the CATALYST architecture includes a component tailored for building trust among

data centres, trust being achieved under an untrusted-by-default environment. The CATALYST Virtual

Container Generator component builds upon the technology of (consortium, permissionable) blockchains to

ensure that data stored inside are visible to all members and cannot be tampered with, whatsoever.

Information related to the lifetime of the loads of the data centre federation as well as data related to the

achieved service level agreements may be securely stored and considered as indisputable, helping in trust-

building across the data centre federation. Adopting a distributed architecture, the virtual container

generator allows for tagging the lifetime of the loads exchanged among data centres, no matter the cloud

management platform of choice of the data centres, facilitating the accounting procedures that data centre

load offloading incurs across data centres of different administrative domains.

In the rest of the document, the main considerations that call for the functionality offered by the virtual

container generator are analysed, followed by a detailed presentation of the design of the component.

Technical specifications, installation requirements and deployment guidelines are also provided.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 11

1 Introduction

One of the core objectives of CATALYST is to turn existing and new data centres (DCs) into flexible multi-

energy hubs, able to sustain investments in RES and energy efficiency by offering mutualized flexibility

services to the smart energy grids. The òalways availableó business model of DCs however, definitely driven

by end-usersõ service mobility requirements, is only rarely compatible with flexibility in their energy

consumption. At the same time, the energy consumption of DCs is constantly rising as a result of the rapidly

increasing demand for cloud-based services provisioning.

CATALYST evangelizes that federated information technology (IT) load orchestration might be a key answer

to this emerging problem; by combining geographical workload balancing together with traceable IT-load

migration between federated DCs, the latter would be able to match IT demands with time-varying on-site

renewable energy sources (RES) so that energy efficiency is achieved respecting the DCs core business

models planning and service level agreements (SLA).

The traceability requirement at the level of a coordinated DC federation is the main target of CATALYSTõs

Virtual Container Generator (VCG) component presented in this deliverable. Powered by a consortium

Ethereum Blockchain (ETH BC), the CATALYST VCG aims at exploiting the ETH BC non-repudiation

characteristics so that IT load relocations may be achieved in a trusted an indisputable manner.

In the following sections, the core notions of VCG, its operational characteristics as well as its specification

are presented.

1.1 Intended Audience

The VCG components target primarily DC operators (DCOs) and owners willing to participate in DC federations

that are actively embracing inter-DC IT load migration, regardless of the motivation under such a strategy;

energy efficiency is not the target of VCG. Considering that VCG caters for traceability of IT load elements

across federations of DCs, this appears to be natively in line with the technological nature of the component.

However, VCG could also be used in single-DC scenarios to ensure trusted, indisputable SLA monitoring at

customer level.

Based on the above discussion, the intended audience of this document is mostly DC Operators and

associated engineers that would like to either use the VCG for own DC optimization, or to integrate their DC

in the CATALYST federation of DCs.

1.2 Relation to other activities

Due to its nature, brokering information among various DCs in a semi-decentralized but fully free of trusted

partiesõ manner, the VCG natively integrates with the Federated DC Migration Controller (DCMC) on one hand

and the CATALYST Marketplace (particularly the IT Load flavour of it) on the other.

Regarding the interaction with the DCMC, the VCG architecture and interfaces affect the design and

specification of the DCMC (particularly the relevant local DC clients) since monitoring the DC state by means

of interacting with the underlying cloud management platform is outside of the scope of VCG. In other words,

the DCMC should cater for DC monitoring and the VCG components should render the monitoring outcomes

persistent and indisputable.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 12

Similarly, VCG indirectly interacts with the IT load flavour of the CATALYST Marketplace since IT load

migrations should be largely coordinated by an overlying marketplace-driven mechanism.

Last, VCG will be validated against results from the CATALYST pilots and their feedback will be used to adapt

and improve it further particularly at the level of functional integration with the rest of the CATALYST

components.

1.3 Document overview

Concluding the introductory section, this paragraph presents the overall document structure hereafter.

Section 2 offers an overview of the motivation that leads to the emergence of the need for an indisputable,

trusted persistence layer for IT load tracking, particularly in scenarios considering mobility of IT load

resources under a federated cloud setting that lacks both central coordination and common administrative

entities. Section 3 outlines the basic design and functional principles governing the operation of VCG, as a

solution that enables the needed layer of data storage trust. Section 4 thoroughly documents the data model

governing the information flows of the VCG accompanied by the APIs that implement its core logic. Further,

in Section 5, installation requirements and guidelines are provided together with best practices with respect

to deployment architectures. Section 6 concludes the document.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 13

2 CATALYST IT load migration strategy

Though mobility is present in many aspects of our everyday life including IT as well (particularly with the

advent of cloud computing and recently smart phones and wearables), mobility at the level of service

provisioning has received less attention. With the big technology giants (e.g. Google, Facebook, Apple,

Amazon etc) monopolizing the interest of the public, the emergence of local DCs as significant service

providers at local or regional level has skipped the attention of both authorities and standardization bodies.

With the emergence of edge computing and 5G, however, the role of the local DCs in service provisioning is

expected to become increasingly significant, simultaneously giving rise to their associated energy

consumption. At the same time, local energy generation from photovoltaic panels or geothermal sources

becomes more and more appealing for DC Operators, with even big players gradually trying to turn their DCs

into using only green energy (e.g. [1]). The abundancy of local energy generation is, however, not granted at

all situations and the increasing energy consumption of DCs causes problems to Smart Grid operators since

they are actively turning into big energy prosumers with limited flexibility as to shaping their energy

consumption curve.

CATALYST builds on the outcomes of the FP7 GEYSER [2] and DOLFIN [3] Smart City/Energy Efficiency DCs

projects and evangelizes a òfollow the energyó approach to:

1. Utilize and trade the wasted DC heat to lower the overall system-level energy distribution footprint,

reduce DC energy costs and even create a new DC income source over longer times;

2. Assess resiliency of energy supply and flexibility, against adverse climatic events or abnormal

demand, trading off DC assets energy generation/consumption against local/distributed RES, energy

storage and efficiency;

3. Exploit migration of traceable ICT-load between federated DCs, matching the IT load demands with

time-varying on-site RES availability (including Utility/non-Utility owned legacy assets), delivering

energy flexibility services to the surrounding energy (power and heat) grids ecosystems.

In simple words, the òfollow the energyó strategy allows DCs to exchange IT load1 among them, depending

on i) the smart grid balancing needs, ii) the availability of local energy generation, iii) the demand for extra

heat (e.g. for district or offices heating or for keeping equipment warm). In all cases, the ultimate goal of

CATALYST thorough the òfollow the energyó strategy is to minimize the energy footprint at the level of

CATALYST federation of DCs. Indeed, by means of the opportunity to relocate IT load from a particular DC to

another, the DCs will be able to increase their flexibility and energy efficiency without disrupting their present

business models, while simultaneously gaining significant added value (e.g. from extra heat absorption, from

capital flows via the accommodation of other DCsõ IT load, from their compliance with current Smart Grid

directives and demand response schemes, etc.).

Table 1, below, tabulates the CATALYST functional requirements that are satisfied by the VCG component

functionalities under the òfollow the energyó perspective.

1 In the CATALYST context OpenStack virtual machines (VMs) [1] and Docker containers [2] are meant.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 14

ReqID Description Priority Derived from

REQ_F28 The system must be able to automatically derive the

SLA state of a given VC.
High Scenario 3, 5, 6, 7, S1.11,

S1.12

REQ_F36 The system must be able to optimally schedule the IT

load in a distributed DC context to realise the òfollow

the energyó approach

High Scenario 3, 5, 6, 7, use cases

S3.1-4

REQ_F45 The system must be able to register new DCs in its

global instance context2
High Scenario 3, 5, 6, 7, use case

S3.1

REQ_F46 The system must be able to register VCs and handle

their details
High Scenario 3, 5, 6, 7, use case

S3.1

REQ_F47 The system must be able to register VC migration

intents
High Scenario 3, 5, 6, 7, use case

S3.1

REQ_F48 The system must be able to register VC migration

confirmations
High Scenario 3, 5, 6, 7, S3.1, S3.4

REQ_F49 The system must be able to provide historical data over

the lifecycle of a VC
High Scenario 3, 5, 6, 7

REQ_F51 The system should provide a graphical way for

overviewing VC details and lifecycle history
Medium Scenario 3, 5, 6, 7

Table 1 ð CATALYST requirements relevant to the VCG component [4].

Further details on the activities of CATALYST related to the òfollow the energyó approach will be provided in

the upcoming deliverables D3.2 [5] and D3.3 [6]. In the next paragraphs, the two ways that CATALYST

considers as optimizing the IT load allocation in a DC federation, namely intra-DC and inter-DC IT load

relocation are presented. It should, however, noted that though VCG could be used to support intra-DC IT

load migrations (particularly for SLA monitoring), the inter-DC case is a better match to its cause.

2.1 Intra DC Migration

Intra-DC migration refers to moving load around computing servers that fall under the administrative domain

of a single DC (be it single- or multi-cloud). IT load migration under such a perspective is common for reasons

of maintenance, load balancing, housekeeping at DC level but also for IT load consolidation (e.g. as project

DOLFIN did). IT load consolidation has been shown to have significant merits when it comes to pursuing

energy efficiency and load flexibility at single DC domains [7], [8]. Intra-DC migration is usually employed in

cases where a trusted federated DCs environment is not available and in cases where there exist DC

segments powered by different power sources (e.g. powered by brown energy, energy from photovoltaic

panels, energy from geothermal sources etc).

Though Docker does not natively support container migration (one has to delete a container from a

computational environment and instantiate it in another), OpenStack supports two types of migration,

namely live and block migration, their core difference being that the former incurs minor to no service

downtime whereas the latter implying several seconds/minutes downtime. Figure 1 provides an overview of

the operations held during a live migration of an OpenStack VM.

2 This component is considered to be distributed, partly running in a centralized manner and partly residing as a client in the CATALYST
compliant DCs.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 15

Figure 1 ð OpenStack live migration control flow [9].

Despite its definite merits and benefits (being self-contained being the most notable one), intra-DC

migrations provide a limited level of flexibility to the DCOs since the load does not disappear; it may just be

moved to another server in the same DC.

2.2 Inter DC Migration

In contrast to intra-DC IT load migration where the IT load and the respective energy consumption does not

relocate, the inter-DC migration aims at moving IT loads from a DC to another DC located at different

geographical location, effectively moving energy consumption from one place to another3. According to the

CATALYST vision, inter-DC relocation will be employed to effectively implement the òfollow the energyó

approach; even in cases of DCs with limited or no availability of local RES, inter-DC migration will unlock the

possibility to move their excess IT load to other, federated DCs. It is worth noting that under the CATALYST

3 In this sense, IT load relocation could be implicitly seen as negative energy dissipation migration in the space domain.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 16

approach, the existence of a DC federation does not imply a federation of administrative domains; each DC

should be able to be self-contained at least at the level of DC administration.

As happens with the intra-DC case, Docker does not allow for inter-DC migration. On the other hand, at the

time of writing this report IT load relocation between 2 DCs in the OpenStack case may only be achieved

under two scenarios:

1. The two DCs fall under the same administrative domain but belong to different OpenStack cells [10]

and their location may be completely different. In this case, live and block VM migration can be

performed as if the two OpenStack installations were one.

2. The two DCs fall under completely different administrative domains. In this case, the only way to

transfer the IT load from one DC to the other is to stop the IT load (VM instances), take snapshots of

the IT load, export it, transfer it to the target DC, import the snapshots and instantiate them again.

Both approaches have significant flaws by definition; in the first case, the requirement for distinct

administrative domains is violated whereas the second one implies significant service downtime. In any case,

even if this service downtime falls under the respective acceptable allowance as per the contractual service

level agreement (SLA) signed between the DC and the end-user, the problem of trusted load traceability

arises; upon snapshot re-instantiation, the resulting VMs get assigned with universal identifiers (UUID) that

are, in general, different that the ones of the initial VMs. It is, therefore, necessary to link the original identity

of the VMs to the later ones. In the common case that the VMs would have to be again relocated to their

initial host DC, they would, again, be assigned with different UUIDs.

CATALYST introduces the notion of the VCG in order to achieve definite traceability of the exchanged IT loads,

trust being delivered based on a trustless-by-default scenario. By logging all VM lifetime events into a

consortium ETH BC established by the members of the (CATALYST) DC federation, it is made possible to track

the mobility of IT loads in an indisputable manner. More details on the architecture and operation of the VCG

components are provided in sections 3 and 4, whereas information related to the way CATALYST aims at

achieving effective IT load migration among different administrative domains will be provided in [6].

 The role of the IT load marketplace

To finalize the puzzle of inter-DC migration, the only thing missing is the way that DCs decide which DCs are

able to accommodate the IT loads that they would wish to relocate. For this reason, CATALYST envisages the

emergence of an IT load marketplace that would allow DCs to participate and publish on one hand their

availability for hosting IT loads from other DCs and, on the other, their intention of relocating IT load from

their premises. Indeed, it is expected that prior to engaging the VCG and the DCs into activating and logging

the inter-DC migration procedures, a formal collaboration agreement should have been reached between

the two DCs. After such a collaboration agreed, has been achieved, the CATALYST inter-DC migration

framework should be able to operate as expected.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 17

3 Design of the virtual containersõ generation component

3.1 Architecture of the VCG components

The VCG has been designed as a distributed component, composed of a server instance (the VCG API Server)

and multiple client instances residing in the DCs (the VCG clients). Although both the server and the client

instances of the VCG share private cache-oriented databases, all information related to events relevant to

the lifetime of virtual loads is registered in an underlying Ethereum Blockchain (ETH BC) network. Figure 2

presents a graphical overview of the VCG high-level architecture, discussed in the following paragraphs.

 Ethereum blockchain network

This is the basic architectural entity of the VCG, granting the latter with the desired immutability and non-

repudiation characteristics, necessary for achieving indisputable traceability across the whole CATALYST IT

load migration operations. In essence, the CATALYST ETH BC network should be conceived as a

permissionable, consortium BC, in which cryptocurrency (Ether) bears no actual financial meaning and is

only used as an enabler for DCs to perform transactions without caring about gas expenditure (see [11] for

details and discussion about the core concepts of Ethereum). To this end, it is utterly important that upon

the initial setup of the ETH BC, a BC boot node should be granted with a practically unlimited amount of

Ether (with respect to the current prototype implementation, this amount of Ether has been set to ρπ) so

VCG API Server

VCG

RESTful

API

DB

Cache

ETH BC

node

BC

Events

Handle

r

External
Requests

VCG Client

ETH BC
node

ETH BC

Explorer

CATALYST ETH BC Network

VCG

Client

WS

Figure 2 ð Architecture of the VCG.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 18

that it can be later distributed to the ETH BC members. The latter should be thought of as the various DCs

that compose the CATALYST DC federation. In other words, each DC should run their own ETH BC mining

node and get granted with a very large amount of Ether4.

The CATALYST ETH BC is responsible of storing information related to i) the registration of DCs in the

CATALYST federation, ii) the VC tags of registered virtual loads (VCs after the attribution of VC tags) and iii)

the lifetime events of VCs in all DCs of the CATALYST federation. The information-storing capabilities of the

VCG BC infrastructure are enabled through a set of ETH distributed applications (DAPPs, effectively ETH

smart contracts). More information on these DAPPs and how they enable information storage is provided in

paragraph 3.2.

Regarding the ETH BC setup, CATALYST considers that a consortium, permissionable ETH BC is mostly

tailored to the needs of the DC federation scope; each DC should maintain their own mining node so that

they are responsible for signing their own transactions. As per the consensus protocol used, there can

definitely be a trade-off between security (from a trust perspective) and energy consumption; if Proof of

Authority (PoA) is used instead of the classical Proof of Work (PoW) or Proof of Stake (PoS), significant energy

savings may be achieved (the interested reader may refer to [12], [13] and [14]). Indeed, under a

permissionable ETH BC setup consideration and granted that enough cybersecurity measures have been

taken to ensure DC infrastructures and communications security, PoA could be used without significant loss

of trust levels. However, if the consortium ETH BC setup is not adopted, then either PoW or PoS should be

employed at the cost of increased energy consumption.

 VCG API Server

The VCG API Server is the main entry point of the VCG, interacting with the outside world and enabling easy

integration of the CATALYST ETH BC with the rest of the CATALYST components. It is responsible for the

registration of DCs into the CATALYST federation (hence the ETH BC), also acting as a gateway for issuing

requests towards the VCG clients running in the CATALYST DCs.

From an architectural perspective, the VCG API Server is responsible for:

Á overhearing the ETH BC for registered events of interest;

Á offering information (based on registered events) to other CATALYST components (e.g. the Federated

DC Migration Controller);

Á receiving information from other CATALYST components (e.g. the DC Migration Controller clients) and

forwarding them to the VCG DC clients.

Regarding its own architecture, the VCG API server is composed of four basic elements:

Á the RESTful API allowing other components and services to interact with it;

Á the ETH BC Events Handler which connects to the ETH BC and overhears for new events;

Á the DB Cache which is a stateful DB storing the events in a temporary DB;

4 Since the CATALYST ETH BC is considered as a private BC, this Ether do not have any actual monetary value and is totally unrelated to
the currency rates of the public Ethereum cryptocurrency.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 19

Á an ETH BC node so that it can perform atomic transactions (pertaining to events logging) to the ETH

BC;

With respect to the above components of the VCG API server and the employed notation, the term òeventó

refers to ETH Events [15]. Further details on the operation of the VCG API server are provided in paragraph

3.2.

 VCG Client

The VCG client is a simple VCG API Server client that communicates with the later by means of a WebSocket

(WS) interface, served by the client and invoked by the VCG API server. In this course, the VCG client is waiting

for requests from the VCG API server in order to proceed with the registration of the relevant lifetime events

in the ETH BC. Based on the above discussion, the VCG client comprises two main components as follows:

Á The VCG WS API server serving requests from the VCG API Server;

Á An ETH BC node so that the DC can register events for its own purposes.

Further details on the operation of the VCG client are provided in paragraph 3.2.

 ETH BC Explorer

(a) Home page ð Blocks list.

(c) Overview of the latest emitted Smart events.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 20

(b) Registration of a new Smart

Contract to monitor for events.

(d) Overview of the CATALYST ETH BC (experimentation deployment ð see

paragraph 5.3)

Figure 3 ð Overview of the user interface of the ETH BC explorer.

The ETH BC explorer is an auxiliary component of the VCG architecture that allows to registered users to

explore the ETH BC status and events emitted. The ETH BC Explorer allows for:

Á Overviewing the mined ETH Blocks of the CATALYST ETH BC;

Á Overviewing the relevant transactions of these blocks;

Á Providing details on the ETH BC infrastructure (such as the chain ID, the last block or the consensus

algorithm used);

Á Defining and monitoring relevant ETH BC events by providing the ETH smart contract application

binary interface (ABI) and selecting the events that should be monitored.

Further details on the operation of the ETH BC explorer are provided in the next paragraph.

 Integration with other CATALYST components

Since the entry point for entering the realm of operation of VCG are the òExternal Requestsó depicted in

Figure 2 and in order to avoid information duplication, the analysis of the VCG operation starts with the

integration with the rest of CATALYST components, particularly the (Federated) DCMC and the respective DC

clients; The VCG client only interacts with the VCG API server and the latter organically interacts with the

(Federated) DCMC and the respective DC clients. Indicatively for an OpenStack case, the DCMC client

service, is connected to the respective OpenStack controller messaging system (usually RabbitMQ) and

overhears for notifications that pertain to the compute (OpenStack nova) and networking (OpenStack

Neutron) services. Specifically, relevant nova notifications include data related to instance creation, deletion,

suspension, shutoff and live migration. Accordingly, neutron notifications are placed actions such as floating

IP association and de-association (the latter could imply an availability change for a VC, since with no floating

IP, it is entirely possible that networking access to the VC is impossible; the VC is unavailable to the end-

user).

As an indicative process flow, when a VM is created and gets assigned a floating IP, the DCMC client registers

the VM to the ETH BC by sending relaying to the VCG API server a request following the data model presented

in Table 3. When the VM status changes (e.g. due to a reboot operation), the VCG is accordingly notified, as

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 21

does when the instance is in migration process. Figure 4 summarizes the operation of the DCMC DC client.

Further details will be provided in the upcoming D3.3.

Figure 4 ð Simplified interactions diagram of the DC Migration Client.

3.2 Operation of the VCG components

As already briefly mentioned in paragraph 3.1.1, the persistence operations of the VCG are lying on the

operation of the underlying ETH BC which, in turn, lies on the execution of a set of DAPPs tailored for the

CATALYST use cases. It is actually these CATALYST DAPPs that enable the storage of information in the

blockchain; whenever a relevant piece of information needs to be registered in the BC, it gets written in the

log of a transaction candidate to entering the BC and when this transaction makes it into a block, the

information is permanently stored in the BC distributed ledger. The CATALYST DAPPs monitor the BC blocks

and when they detect information related to the events tabulated in Table 2 and the identity properties of

the involved DCs are as expected (e.g. the involved DCs are already registered in the CATALYST BC) a relevant

event is emitted. In turn, the BC Events Handler operating within the VCG API Server, is able to overhear for

emitted ETH BC events and handle them (e.g. forward them to be persisted in the VCG API Server DB Cache).

Event Name Description

DatacenterRegistered Emitted when a new DC enters the CATALYST federation of DCs

ContainerRegistered Emitted when a new virtual load gets registered into the ETH BC so that it

may get a VC tag

ContainerAvailabilityChanged Emitted when the availability of a VC changes (as a result of handling a VC

lifecycle event)

ContainerMigrationPending Emitted when a new migration of a VC is agreed between two federated

parties (assuming that an agreement at the IT load marketplace has

already been reached)

ContainerMigrated Emitted when a migration of a VC has been completed.

Table 2 ð Events supported by the DAPPs of the CATALYST ETH BC.

Figure 5 visualizes the control flow of the operations required to persist the information from the DCMC DC

clients to the VCG API Server, the local DC VCG clients and, finally, the ETH BC supporting CATALYST.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 22

Figure 5 ð Sequence diagram of the VCG operation.

As a first step towards operating the VCG as a whole, the DCO should register their DC into the ETH BC

CATALYST DAPPs through the VCG, according to the following steps:

1. To do so, they should post a relevant request to the VCG API Server, containing the name of the DC

as well as its ETH BC wallet address5.

2. The VCG API Server forwards this request to the local VCG DC client to perform the transaction;

3. The DC gets registered into the CATALYST DAPPs scope.

When a virtual load (e.g. VM or Docker container) is created in a CATALYST federated DC, the local DCMC

client contacts the VCG API Server in order to initiate the procedure of acquiring a VC tag. The procedure is

as follows:

1. The local DCMC client notifies the VCG API Server of the new virtual load;

2. The VCG API server checks the validity of the message data format and the validity of the DC

registration in the CATALYST DC federation.

3. The VCG API Server communicates with the local DC VCG client and informs it of the event;

4. The local VCG DC client publishes a transaction to the ETH BC to register a container; the CATALYST

DAPPs generate a VC tag according to Listing 1, add the newly created VC details in the DAPP registry

and emits a ContainerRegistered event as briefly presented in Table 2 and signature showed in

Listing 2; this event structure is actually the data that enters the transaction log and gets registered

into the ETH BC. A relevant transaction hash is provided to the VCG API Server as a response.

5. This transaction hash is returned to the local DCMC DC client as a response.

function registerContainer(

 string vcType,

 bool available,

 uint8 vcpu,

 uint8 vram,

 uint8 vdisk,

 string id,

5 We assume that the DC has already contacted the CATALYST ETH BC administrator so that access to it is granted explicitly since the
CATALYST ETH BC is considered to be a consortium one. Under this perspective, the DCO of each DC should be already registered into
the ETH BC with a valid public key (address).

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 23

 string ipAddress,

 string controller,

 uint created

) public onlyDatacenter {

 // Generate vcTag

 bytes32 vcTag = keccak256(vcType, id, msg.sender, created);

 Flavor memory flavor = Flavor({

 vcpu: vcpu,

 vram: vram,

 vdisk: vdisk

 });

 Information memory info = Information({

 id: id,

 ipAddress: ipAddress,

 host: msg.sender,

 controller: controller

 });

 // Add the container

 containers[vcTag] = Container({

 vcTag: vcTag,

 vcType: vcType,

 flavor: flavor,

 info: info,

 owner: msg.sender,

 created: created,

 available: available,

 updated: now

 });

 emit ContainerRegistered(vcTag, created, msg.sender);

 }

Listing 1 ð VC registration in the ETH BC context.

event ContainerRegistered(bytes32 vcTag, uint timestamp, address owner);

Listing 2 ð Signature of the ContainerRegistered event.

The processing of the rest of the VM lifecycle events follows the exact same data and control flow (albeit

against different DAPP functions, emitting different DAPP events and definitely skipping the part of the VC

Tag creation) so details are skipped.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 24

(a) View of the ETH BC events monitored by the VCG

(b) Details of a ContainerRegistered event as decoded

by the VCG.

(c) Details of the Transaction holding the event of (b)

with the transaction data encoded in Hex.

(d) Details of the block containing the trasnsaction of

(c).

Figure 6 ð Instances of the VCG ETH BC Explorer.

At all times, it is possible to verify the operations that involve transactions with the ETH BC via the User

Interface of the ETH BC Explorer as in Figure 6.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 25

4 Implementation of the virtual containersõ generator

4.1 Application programming interface description

In the following paragraphs, the API used and exposed by the various VCG subcomponents is presented.

First, the data models governing the data exchange among the various subcomponents is given, followed by

the WS and RESTful interfaces catalysing this data exchange.

 VCG Data Model

Next, the data model exposed by the various VCG services including the RESTful, WS and ETH BC ones is

tabulated. Note that all datetime representations are in ISO8601 format under the UTC time zone, unless

otherwise explicitly stated.

Property Type Description

available Boolean Indicates the availability of the IT load accompanied by the VC

controller String The IP address of the node controlling the cloud management platform hosting
the IT load. Should be in URL format, e.g. http://192.168.1.2)

created Datetime The time on which the VC was created

host String The wallet public key of the host DC in the CATALYST ETH BC

id String The current unique identifier of the IT load (can be either an OpenStack UUID
or a Docker Container id)

ip_address String The IP address of the IT load. Should be in URL format, e.g. http://192.168.1.2)

vc_type String The type of VC (can be either openstack:vm, or docker:container)

vcpu Integer The number of virtual CPUs of the IT load

vdisk Integer The virtual HDD used by the IT load in GB

vram Integer The virtual RAM used by the IT load in MB

Table 3 ð VC creation request data model.

Property Type Description

available Boolean Indicates the availability of the IT load accompanied by the VC

controller String The IP address of the node controlling the cloud management platform hosting
the IT load. Should be in URL format, e.g. http://192.168.1.2)

created Datetime The time on which the VC was created

host String The wallet public key of the host DC in the CATALYST ETH BC

id String The current unique identifier of the IT load (can be either an OpenStack UUID
or a Docker Container id)

ip_address String The IP address of the IT load. Should be in URL format, e.g. http://192.168.1.2)

owner String The wallet public key of the owner DC in the CATALYST ETH BC

updated Datetime The time on which the details of this VC were updated, in UTC

vc_type String The type of VC (can be either openstack:vm, or docker:container)

Table 4 ð VC data model.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 26

Property Type Description

vcpu Integer The number of virtual CPUs of the IT load

vdisk Integer The virtual HDD used by the IT load in GB

vram Integer The virtual RAM used by the IT load in MB

Table 5 ð VC flavour data model.

Property Type Description

invoice Integer The ID of the invoice agreement that was achieved via the IT load marketplace

price Integer The price agreed between the two DCs for the accommodation of the IT load

timestamp Datetime The datetime of the VC migration request (in UTC time zone)

to_address String The wallet public key of the target DC

Table 6 ð Pending VC migration request data model.

Property Type Description

from_address String The wallet public key of the origin DC

invoice Integer The ID of the invoice agreement that was achieved via the IT load marketplace

price Integer The price agreed between the two DCs for the accommodation of the IT load

to_address String The wallet public key of the target DC

vc_tag String The VC tag associated to the VC under migration

Table 7 ð Pending VC migration (registered) data model.

Property Type Description

controller String The IP address of the node controlling the cloud management platform hosting
the IT load. Should be in URL format, e.g. http://192.168.1.2)

id String The ID of the IT load

invoice Integer The ID of the invoice agreement that was achieved via the IT load marketplace

ip_address String The IP address of the IT load. Should be in URL format, e.g. http://192.168.1.2)

price Integer The price agreed between the two DCs for the accommodation of the IT load

timestamp Datetime The datetime of the VC migration completion

Table 8 ð Pending VC migration confirmation of completion data model.

Property Type Description

name String The name of the DC

registered Boolean Indicates whether the DC has been already registered in the VCG

wallet String The wallet public key of the DC

Table 9 ð DC data model.

Property Type Description

name String The name of the DC

wallet String The wallet public key of the DC

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 27

Table 10 ð DC registration data model.

Property Type Description

vc_tag String The VC tag generated by the VCG

owner String(42) The (public key of the) owner of the VC

created String The time of the VC creation (in ISO8601 format)

block_number Integer
The (BC) block number which includes the transaction containing the
registration of the VC

block_hash String(66) The (B) block hash

Table 11 ð VC tag data model.

Property Type Description

status Boolean The container availability state

timestamp Datetime The datetime of the VC availability change

Table 12 ð VC Availability change request data model.

Property Type Description

tx_hash String(66)
The transaction hash provided by the VCG ETH BC infrastructure when registering a

new VC

Table 13 ð Transaction hash data model.

Property Type Description

id Integer The id of the event

name String The name of the event

args String The arguments of the event

log_index Integer The index of the log in the transaction

tx_index Integer The index of the transaction in the block

tx_hash String(66) The transaction hash

block_number Integer The index of the block in the BC

block_hash String(66) The hash of the block

address String(42) The smart contract address that the event originated from

created String The time of the block generation

Table 14 ð Chain event data model.

Property Type Description

method String The method of the Smart Contract to invokeΦ Lǘ ǎƘƻǳƭŘ ŀƭǿŀȅǎ ōŜ άǊŜƎƛǎǘŜǊψŎƻƴǘŀƛƴŜǊέΦ

available Boolean Indicates the availability of the IT load accompanied by the VC

controller String The IP address of the node controlling the cloud management platform hosting the IT
load. Should be in URL format, e.g. http://192.168.1.2)

created Datetime The time on which the VC was created

id String The current unique identifier of the IT load (can be either an OpenStack UUID or a
Docker Container id)

ip_address String The IP address of the IT load. Should be in URL format, e.g. http://192.168.1.2)

vc_type String The type of VC (can be either openstack:vm, or docker:container)

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 28

vcpu Integer The number of virtual CPUs of the IT load

vdisk Integer The virtual HDD used by the IT load in GB

vram Integer The virtual RAM used by the IT load in MB

Table 15 ð VCG client VC registration data model.

Property Type Description

method String
The method of the Smart Contract to invoke. It should always be

òpending_migrateó.

from_address String The wallet public key of the origin DC

invoice Integer The ID of the invoice agreement that was achieved via the IT load marketplace

price Integer The price agreed between the two DCs for the accommodation of the IT load

to_address String The wallet public key of the target DC

vc_tag String The VC tag associated to the VC under migration

Table 16 ð VCG Client VC pending migration registration data model.

Property Type Description

method String
The method of the Smart Contract to invoke. It should always be

òmigrate_containeró.

controller String The IP address of the node controlling the cloud management platform hosting the

IT load. Should be in URL format, e.g. http://192.168.1.2)

id String The ID of the IT load

invoice Integer The ID of the invoice agreement that was achieved via the IT load marketplace

ip_address String The IP address of the IT load. Should be in URL format, e.g. http://192.168.1.2)

price Integer The price agreed between the two DCs for the accommodation of the IT load

timestamp Datetime The datetime of the VC migration completion (in UTC time zone)

vc_tag String The VC tag of the VC

Table 17 ð VCG client registration of VC migration completion data model.

Property Type Description

method String
The method of the Smart Contract to invoke. It should always be

òchange_availabilityó.

status Boolean The container availability state

timestamp Datetime The datetime of the VC availability change

vc_tag String The tag of the VC

Table 18 ð VCG client request for the registration of a VC availability change data model.

Property Type Description

response String The transaction hash, if everything went well.

_request_id String The unique uuid of the request.

Table 19 ð VCG client successful response.

Property Type Description

response String The exception information.

_request_id String The unique uuid of the request.

error Boolean Details if this is an error (always set to true)

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 29

Table 20 ð VCG client response in the case of an exception.

4.2 Exposed WebSocket interfaces

The VCG client exposes a WS interface that enables a the VCG API Server to send commands to. The WS

interface listens to the following endpoint:

ws(s)://IP:PORT/ws/ { DC_NAME}

Table 21 ð Service endpoint URL of the VCG client WS.

Note that at all times, a header with the wallet address of the DC should be also included in the WS request,

e.g. "wallet":"<address>" . Depending on the operation of required by the VCG client, one of the data

models tabulated in Table 15 - Table 18 is expected.

If everything went well, then a transaction hash is expected together with a request ID; since the

communication in the context of a WS are asynchronous, in order to be able to track the responses from the

WS server, the clients should maintain a local register (cache) of their requests and the request IDs they got

after performing the request. In case of an exception, the response from the WS interface is as of Table 20.

4.3 Exposed RESTful interfaces

Apart from the above briefly described WS interfaces, the VCG API server exposes a rich set of RESTful API

endpoints, allowing applications to quickly interact with the CATALYST BC infrastructure. The set of exposed

API services are divided into three base API groups, depending on the orientation of the group of APIs. In this

course, the identified API groups are related to DC management, VC management and support for SLAs. In

the following paragraphs, these API groups are presented. Note that in all cases, only the relative API service

endpoint URL is provided, the base API service endpoint URL always being "http://<IP>:<PORT>/api ".

 DC management

This group of APIs is related to DC management, particularly DC registration at the CATALYST BC

infrastructure as well as retrieval of the registration details.

4.3.1.1 Register a new DC

URL /datacenter/register /

Method POST

Headers Content-Type: application/json

Request body DC Registration (see Table 10)

Response body Transaction Hash (see Table 13)

Response codes 200 ð Everything went well

400 ð The provided data is invalid or malformed

403 ð The Smart Contract rolled back (declined) the transaction

500 ð Internal server error

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 30

This API should be used in order to register a DC into the CATALYST VCG infrastructure (effectively the

Ethereum BC governing the set of available operations). Having completed the installation of the VCG client,

the DC should be able to register itself with a given public key (wallet address). Granted proper configuration,

the DC Registration details should be readily available (just the DC name and the wallet address of the VCG

client are required).

Since the relevant information needs to be stored in the BC itself, the response is not possible to be made

available directly. Instead, a transaction hash object is returned, containing the hash of the transaction that

this DC registration request will be registered in.

4.3.1.1.1 Indicative service invocation

Suppose that the DC is named DC1 and has a wallet address (public key, as generated by the native

Ethereum Go client, geth [16]) 0xf2735fa1601ec44Ce8b1A9FC504973d18c34af7B . An indicative

service invocation could be as follows:

curl - X POST "http://192.168.1.21 5:5100/api/datacenter/register/" \

 - H "Content - Type: application/json" \

 - d ' {

 "name" : "DC1" ,

 "wallet" : "0xf2735fa1601ec44Ce8b1A9FC504973d18c34af7B"

 } '

Response code : 200

Response body :

{

 "tx_hash" :

"0xeb0b6dbe37c3ea8b257ed7d94008842beac808ae1aadf0fc42d1b1867300ecb0"

}

Listing 3 ð Registering a DC into the CATALYST VCG BC infrastructure.

4.3.1.2 Get details over a DC

URL /datacentre/{address}/details/

Method GET

Headers N/A

Request body N/A

Response body Data Centre (see Table 9)

Response codes 200 ð Everything went well

400 ð The provided data is invalid or malformed

500 ð Internal server error

Having requested a DC registration, one can easily retrieve the registration details of the DC by invoking the

present service, given the public key of the VCG client of the DC.

Parameter Type Comments Example value

address String(42) The public key (wallet address) of

the DC VCG client.

0x10f683d9acc908cA6b7A

34726271229B846b0292

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 31

Table 22 ð Parameters required for getting the details over a DC registration.

If the DC has been registered as in the BC, then the òregisteredó attribute of the response body should equal

òtrueó, otherwise òfalseó.

4.3.1.2.1 Indicative service invocation

Considering the DC with name DC1 introduced in the previous paragraph, getting the details over its

registration status would be as in the following listing.

curl

"http://192.168.1.215:5100/api/datacenter/ 0x10f683d9acc908cA6b7A34726271229B846b

0292 /details/"

Response code : 200

Response body :

{

 "name" : "DC1" ,

 "wallet" : "0x10f683d9acc908cA6b7A34726271229B846b0292" ,

 "registered" : true

}

Listing 4 ð Acquiring details over the registration sttsus of a DC.

 VC Management

This group of APIs is meant to be used to manage VCs as regards their BC representation.

4.3.2.1 Register a new VC

URL /datacenter/{dc_name}/container/register/

Method POST

Headers Content-Type: application/json

Request body VC creation request (see Table 3)

Response body Transaction Hash (see Table 13)

Response codes 200 ð Everything went well

400 ð The provided data is invalid or malformed

403 ð The Smart Contract rolled back (declined) the transaction

408 ð The underlying DC VCG client did not respond in time

500 ð Internal server error

This service is meant to be used in order to register a VC into the BC infrastructure, granted that the DC

hosting the newly-created VC has already been registered into the CATALYST BC infrastructure.

Parameter Type Comments Example value

dc_name String The name of the DC, as has been registered

into the CATALYST BC infrastructure

DC1

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 32

Table 23 ð Parameters required for registering a new VC.

4.3.2.1.1 Indicative service invocation

Assuming that the VC refers to an OpenStack VM featuring 1vCPU, 1GB vRAM, 10GB of vHDD, UUID

b55f090c - 67f0 - 4691 - a736 - 104ebe82c2e9 , its IP address is 10.0.9.39 and the cloud management

platform controller has an IP 10.0.9.2, an indicative service invocation instance could be as depicted in

Listing 5.

curl - X POST \

 http://192.168.1.215:5100/api/datacenter/DC1/container/register/ \

 - H 'Content - Type: application/json' \

 - d ' {

 "vc_type" : "openstack:vm" ,

 "available" : true ,

 "vcpu" : 1,

 "vram" : 1024 ,

 "vdisk" : 10,

 "id" : "b55f090c - 67f0 - 4691 - a736 - 104ebe82c2e9" ,

 "ip_address" : "http://10.0.9.39" ,

 "controller" : "http://10.0.9.2" ,

 "created" : "2018 - 09- 11T14:46:23.470Z"

} '

Response code : 200

Response body :

{

 "tx_hash" :

"0xf2275d47df41bfc9642cef271f59d997ac4fa197a2df3380d5ad86b455ade94a"

}

Listing 5 ð Registering a new VC in DC1.

Note that normally, this API should be automatically invoked by the local DC DCMC client, upon creation of

the OpenStack VM.

4.3.2.2 Get the VC tag after a successful registration

URL /transaction/{tx_hash}/vctag/

Method GET

Headers N/A

Request body N/A

Response body VC tag (see Table 11)

Response codes 200 ð Everything went well

404 ð VC tag not found

500 ð Internal server error

Having made a request for a VC registration as in the previous section and having acquired a relevant

transaction hash, this service allows for the retrieval of the VC tag generated.

Parameter Type Comments Example value

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 33

tx_hash String(66) The transaction hash acquired after

successful invocation of the API service for

registering VCs

0xf2275d47df41bfc9642c

ef271f59d997ac4fa197a2

df3380d5ad86b455ade94a

Table 24 ð Parameters required for getting a VC tag.

4.3.2.2.1 Indicative service invocation

Assuming the VC of the previous paragraph, the following listing outlines how to get a VC tag when a relevant

transaction hash has already been provided as an answer.

curl - X GET

"http://192.168.1.215:5100/api/transaction/ 0xf 2275d47df41bfc9642cef271f59d997ac4

fa197a2df3380d5ad86b455ade94a /vctag/"

Response code : 200

Response body :

{

 "vc_tag" :

"0xc5f496b77a1d1961d63b5bae0d81bbe809b715f794cf2d6284906d0180e38930" ,

 "owner" : "0x10f683d9acc908cA6b7A34726271229B846b0292" ,

 "created" : "2018 - 09- 11T14:46:23Z" ,

 "block_number" : 101827 ,

 "block_hash" :

"0x6684e805bda03a5eb6e4030b0d4a82de6d74c86 4bab50daa8d68f49ebfdef48a"

}

Listing 6 ð Acquiring a VC tag out of a transaction hash.

4.3.2.3 Get details about a VC

URL /container/{vc_tag}/details/

Method GET

Headers N/A

Request body N/A

Response body VC object (see Table 4)

Response codes 200 ð Everything went well

400 ð The provided data is invalid or malformed

404 ð VC tag not found

500 ð Internal server error

Having acquired a VC tag by means of invoking the API service documented in the previous paragraph, one

is able to also check the details of that particular VC by using this service.

Parameter Type Comments Example value

vc_tag String(66) The VC tag allocated to the particular VC 0xc5f496b77a1d1961d63b

5bae0d81bbe809b715f794

cf2d6284906d0180e38930

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 34

Table 25 ð Parameters required in order to retrieve details of a particular VC.

4.3.2.3.1 Indicative service invocation

With reference to the VC registered in the previous paragraphs, the following listing is indicative of how

details on the particular VC of interest could be retrieved.

curl - X GET

"http://192.168.1.215:5100/api/container/0xc5f496b77a1d1961d63b5bae0d81bbe809b71

5f794cf2d6284906d0180e38930/details/"

Response code : 200

Response body :

{

 "vc_type" : "openstack:vm" ,

 "available" : true ,

 "id" : "b55f090c - 67f0 - 4691 - a736 - 104ebe82c2e9" ,

 " ip_address" : "http://10.0.9.39" ,

 "controller" : "http://10.0.9.2" ,

 "host" : "0x10f683d9acc908cA6b7A34726271229B846b0292" ,

 "owner" : "0x10f683d9acc908cA6b7A34726271229B846b0292" ,

 "updated" : "2018 - 09- 11T15:08:00Z" ,

 "created" : "2018 - 09- 11T14:46:23Z"

}

Listing 7 ð Acquiring details related to a given VC tag.

4.3.2.4 Get the flavour of a VC

URL /container/{vc_tag}/flavor/

Method GET

Headers N/A

Request body N/A

Response body VC flavour object (see Table 5)

Response codes 200 ð Everything went well

404 ð Resource not found

500 ð Internal server error

This service should be invoked by anyone in need of acquiring details of the flavour (virtual hardware

configuration) of a VC.

Parameter Type Comments Example value

vc_tag String(66) The VC tag allocated to the VC of interest 0xc5f496b77a1d1961d63b

5bae0d81bbe809b715f794

cf2d6284906d0180e38930

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 35

Table 26 ð Parameters for invoking the service offering the flavour of a VC.

4.3.2.4.1 Indicative service invocation

With reference to the VC registered in the previous paragraphs, the following listing is indicative of how

details on the flavour of a particular VC of interest could be retrieved.

curl - X GET

"http://192.168.1.215:5100/api/container/0xc5f496b77a1d1961d63b5bae0d81bbe809b71

5f794cf2d6284906d0180e38930/flavor/"

Response code : 200

Response body :

{

 "vcpu" : 1,

 "vram" : 1024 ,

 "vdisk" : 10

}

Listing 8 ð Acquiring the VC flavour details related to a given VC.

4.3.2.5 Get the history of a VC

URL /container/{vc_tag}/history/

Method GET

Headers N/A

Request body N/A

Response body List<Chain Event> (see Table 14)

Response codes 200 ð Everything went well

400 ð The provided data is invalid or malformed

403 ð The Smart Contract rolled back (declined) the transaction

500 ð Internal server error

This endpoint may be used in order to get details over the events related to a VC. With the term òeventsó

notifications related to the creation, deletion or migration of VC are implied.

Parameter Type Comments Example value

vc_tag String(66) The VC tag allocated to the VC of interest 0xc5f496b77a1d1961d63b

5bae0d81bbe809b715f794

cf2d6284906d0180e38930

Table 27 ð Parameters for invoking the service offering the history of a VC.

4.3.2.5.1 Indicative service invocation

With reference to the VC registered in the previous paragraphs, the following listing is indicative of how

details on the history of a particular VC of interest could be retrieved.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 36

curl - X GET

"http://192.168.1.215:5100/api/container/0xc5f496b77a1d1961d63b5bae0d81bbe809b71

5f794cf2d6284906d0180e38930/history/"

Response code : 200

Response body :

[

 {

 "id" : 4,

 "name" : " ContainerRegistered" ,

 "args" : {

 "owner" : "0x10f683d9acc908cA6b7A34726271229B846b0292" ,

 "vcTag" :

"0xc5f496b77a1d1961d63b5bae0d81bbe809b715f794cf2d6284906d0180e38930" ,

 "timestamp" : "2018 - 09- 11T14:46:23Z"

 },

 "log_index" : 0,

 "tx_index" : 0,

 "tx_hash" : "0xf2275d47df41bfc9642cef271f59d997ac4fa197a2df3380d5ad86b455ade94a" ,

 "block_number" : 101827 ,

 "block_hash" :

"0x6684e805bda03a5eb6e4030b0d4a82de6d74c864bab50daa8d68f49ebfdef48a" ,

 "address" : "0x6d4A5a876D09F8A381993d7f8DF9D3764C5A2491" ,

 "created" : "2018 - 09- 11T15:08:01.227273Z"

 }

]

Listing 9 ð Acquiring the VC chain event history of a given VC.

4.3.2.6 Get the migration status of a VC

URL /container/{vc_tag}/migration/pending/

Method GET

Headers N/A

Request body N/A

Response body

Response codes 200 ð Everything went well

404 ð Resource not found

500 ð Internal server error

This endpoint may be used in order to get details over the pending migrations (if any) of a given VC.

Parameter Type Comments Example value

vc_tag String(66) The VC tag allocated to the VC of interest 0xc5f496b77a1d1961d63b

5bae0d81bbe809b715f794

cf2d6284906d0180e38930

Table 28 ð Parameters for invoking the service offering the history of a VC.

4.3.2.6.1 Indicative service invocation

With reference to the VC of the previous paragraphs, the following listing is indicative of how details on the

history of a particular VC of interest could be retrieved.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 37

curl - X GET

"http://192.168.1.215:5100/api/container/0xc5f496b77a1d1961d63b5bae0d81bbe80 9b71

5f794cf2d6284906d0180e38930 / migration/pending /"

Response code : 200

Response body :

{

 "vc_tag" :

"0x00" ,

 "from_address" : "0x00" ,

 "to_address" : "0x00" ,

 "price" : 0,

 "invoice" : 0

}

Listing 10 ð Acquiring the pending migrations of a given VC.

In this case, the response indicates that there is no relevant pending migration; the from/to addresses are

both zero as is the vc_tag associated.

 SLA monitoring

This group of APIs allows for registering information (chain events) over the availability and migrations of

VCs.

4.3.3.1 Register a VC availability change

URL /datacenter/{dc_name}/container/{vc_tag}/availability/change/

Method POST

Headers Content-Type: application/json

Request body VC Availability change request object (see Table 12)

Response body Transaction hash object (see Table 13)

Response

codes

200 ð Everything went well

400 ð The provided data is invalid or malformed

403 ð The Smart Contract rolled back (declined) the transaction

408 ð Request timeout

500 ð Internal server error

This service may be used in order to register an availability change for a given VC.

Parameter Type Comments Example value

dc_name String The name of the DC, as has been registered

into the CATALYST BC infrastructure

DC1

vc_tag String(66) The VC tag allocated to the VC of interest 0xc5f496b77a1d1961d63b

5bae0d81bbe809b715f794

cf2d6284906d0180e38930

Table 29 ð Paramters required for registering a VC availability change.

4.3.3.1.1 Indicative service invocation

With reference to the VC of the previous paragraphs, the following listing is indicative of one can trigger an

availability change.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 38

curl - X POST \

http://192.168.1.215:5100/api/datacenter/DC1/container/0xc5f496b77a1d1961d63b5ba

e0d81bbe809b715f794cf2d6284906d0180e38930/availability/change/ \

 - H 'Content - Type: application/json' \

 - d ' {

 "status" : false ,

 "timestamp" : "2018 - 09- 13T09:08:10.768Z"

} '

Response code : 200

Response body :

{

 "tx_hash" :

"0xd5765d47df41bfc9642cef271f59d997ac4fa197a2df3380d5ad86b455ade05b"

}

Listing 11 ð Acquiring the pending migrations of a given VC.

4.3.3.2 Register a new VC relocation request

URL /datacenter/{dc_name}/container/{vc_tag}/migrate/pending/

Method POST

Headers Content-Type: application/json

Request body Pending VC migration request object (see Table 6)

Response body Transaction hash (see Table 13)

Response codes 200 ð Everything went well

400 ð The provided data is invalid or malformed

403 ð The Smart Contract rolled back (declined) the transaction

500 ð Internal server error

This endpoint should be used by DCs that would like to register the intention of initiating the migration of a

VC from a DC to another.

Parameter Type Comments Example value

dc_name String The name of the DC, as has been registered

into the CATALYST BC infrastructure

DC1

vc_tag String(66) The VC tag allocated to the VC of interest 0xc5f496b77a1d1961d63b

5bae0d81bbe809b715f794

cf2d6284906d0180e38930

Table 30 ð Paramters required for registering a VC migration.

4.3.3.2.1 Indicative service invocation

With reference to the VC of the previous paragraphs, the following listing is indicative of one can register the

initiation of a migration from DC1 to DC2.

curl - X POST \

http://192.168.1.215:5100/api/datacenter/DC1/container/0xc5f496b77a1d1961d63b5ba

e0d81bbe809b715f794cf2d6284906d0180e38930/migrate/pending/ \

 - H 'Content - Type: application/json' \

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 39

 - d ' {

 "target" : "DC2" ,

 "price" : 5,

 "invoice" : 13,

 "timestamp" : "2 018 - 09- 13T09:28:48.222Z"

} '

Response code : 200

Response body :

{

 "tx_hash" :

"0x00580991568a1db8a67ab8b3dcb6281601f2bdb56cb0a06205347432b347fc2c"

}

Listing 12 ð Registering a new pending migration for a given VC.

4.3.3.3 Confirm a VC relocation

URL /datacenter/{dc_name}/container/{vc_tag}/migrate/confirm/

Method POST

Headers Content-Type: application/json

Request body Pending VC migration confirmation request object (see Table 8)

Response body Transaction hash object (see Table 13)

Response codes 200 ð Everything went well

400 ð The provided data is invalid or malformed

403 ð The Smart Contract rolled back (declined) the transaction

408 ð Request timeout

500 ð Internal server error

This endpoint is used by DCs in order to inform the VCG that a DC confirms the completion of the migration

of a VC.

Parameter Type Comments Example value

dc_name String The name of the DC, as has been registered

into the CATALYST BC infrastructure

DC2

vc_tag String(66) The VC tag allocated to the VC of interest 0xc5f496b77a1d1961d63b

5bae0d81bbe809b715f794

cf2d6284906d0180e38930

Table 31 ð Paramters required for registering a VC migration.

4.3.3.3.1 Indicative service invocation

With reference to the VC of the previous paragraphs, the following listing is indicative of how DC2 confirms

the completion of the migration of a VC from DC1.

curl - X POST \

http://192.168.1.215:5100/api/datacenter/DC2/container/0xc5f496b77a1d1961d63b5ba

e0d81bbe809b715f794cf2d6284906d0180e38930/migrate/confirm/ \

 - H 'Content - Type: application/json' \

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 40

 - d ' {

 "id" : " c55f090c - 67f0 - 4784 - a736 - 215ebeb2c2e9" ,

 " ip_address" : "http://10.9.0.12" ,

 "controller" : "http://10.9.0.1" ,

 "price" : 5,

 "invoice" : 13,

 "timestamp" : "2018 - 09- 13T09: 48:48.222Z"

} '

Response code : 200

Response body :

{

 "tx_hash" :

" 0x21950cdc56e73f5ccd0d90cd598d6d535e517edb009bc9de25a717902b64061f "

}

Listing 13 ð Registering the completion of a migration for a given VC.

4.4 Dynamic VCG API Server documentation

The CATALYST VCG API Server is dynamically auto-documented, exposing the full extent of its RESTful API

specifications in the form of an OpenAPI specification (OAS) document [17]. Offering a visual representation

of this specification, a Swagger.io [18] interface is employed, as shown in Figure 7 and is available under

the relative URL "/api/swagger / ".

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 41

Figure 7 ð Swagger interface of the VCG API Server.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 42

5 Installation requirements

5.1 Hardware requirements

Before trying to install the VCG components and services, one should be sure to cover the relevant hardware

requirements6.

Requirement Minimum Recommended Comments

CPU cores 8 16 N/A

RAM (MB) 8192 16384 N/A

Disk (GB) 20 40 N/A

Table 32 ð Hardware requirements for running a whole-in-one demonstration of VCG.

Similarly, Table 33, below, summarizes the hardware requirements for operating the VCG RESTful and WS

web services independently.

Requirement Minimum Recommended Comments

CPU cores 2 4

Needs to be increased depending on the end to end

delay requirements as well as the number of

connected clients increases.

RAM (MB) 2048 4096

Needs to be increased depending on the end to end

delay requirements as well as the number of

connected clients increases.

Disk (GB) 10 40

Needs to be increased depending on the end to end

delay requirements as well as the number of

connected clients increases.

Table 33 ð Hardware requirements for installing and properly operating the VCG RESTful and WS services.

Table 34 highlights the minimum hardware requirements for running the services required for operating the

ETH BC. It should be highlighted that depending on the configuration of the ETH BC, as defined in its genesis

block [19], the numbers below may vary; in the present document we only cover a typical scenario for

operating a permissioned ETH BC network.

6 Even if the VCG services are installed in a virtualized environment (e.g. OpenStack VM or Docker container), in this document we refer
to CPU, RAM and HDD requirements as hardware requirements.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 43

Requirement Minimum Recommended Comments

CPU cores 4 8
A 64bit x86 CPU architecture is assumed, at least

XYZ.

RAM (MB) 4096 16384 N/A

Disk (GB) 100 1000
Needs to be increased depending on the number of

expected interactions with the VCG over time

Miscellaneous
¶ In general, to achieve effective BC operation, mining should take place in

GPUs rather than CPUs.

Table 34 ð Hardware requirements for each ETH BC node.

Finally, Table 35 overviews the hardware requirements that should be satisfied in order to enable the

operation of the VCG client module and properly interact with the rest of the VCG (core) components.

Requirement Minimum Recommended Comments

CPU cores 1 2 N/A

RAM (MB) 64 256 N/A

Disk (GB) 5 10 N/A

Miscellaneous
Normally, the host (usually the cloud management infrastructure controller) should

cover the above requirements in all cases.

Table 35 ð Hardware requirements for executing the VCG client.

Having ensured that the hardware requirements of for running the various VCG services are satisfied, the

software requirements are typical for cloud-based applications. For the ETH BC, a modern (released after

2016) Linux OS version is assumed to be available. For the web and client services, any OS able to run

Python with a version at least 3.6 is assumed (Linux, Unix, Windows and MacOS are all supported).

5.2 Software requirements

As already detailed in the previous sections, the VCG infrastructure features a distributed, client-server

architecture with multiple read/writes in the BC infrastructure. The latter has been implemented using

Ethereum and all the relevant transactions have been implemented using the standard Go language

Ethereum client geth [20] version 1.8. The API-related services of both the VCG API Server and the VCG API

client have been implemented using Python3 Django REST framework and all the interactions with geth have

been implemented using the web3 Python package, version 4.2.1. The websocket services have been

implemented with the help of Django Channels [21].

With respect to smart contracts, the implementation has been done using the Solidity programming

language, being the default for setting up smart contracts in an Ethereum context.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 44

Considering the above, support for all the above programming languages and frameworks should be ensured

in all deployment options7.

The complete set of the VCG infrastructure source code is available at https://gitlab.com/project-

catalyst/VCG.

5.3 Deployment options and installation guidelines

As already presented in Section 3, the full-stack VCG service environment architecture is a hybrid one,

comprising components that are both distributed (e.g. the BC nodes, the VCG clients) as well as central (the

VCG API server). In order to facilitate development and enable safe experimentation by technology followers,

CATALYST has opted for the delivery of two deployment options, one referring to

development/experimentation environments and one referring to operational environments as briefly

presented in the following paragraphs.

 Experimentation deployment

The experimentation deployment is meant to be employed by DCOs that would like to experiment with the

CATALYST VCG APIs and overall functionality. The default experimentation deployment is achieved by means

of consecutive and guided execution of proper docker-compose scripts that result in the instantiation of eight

docker containers as follows:

Á 2 distinct DC (named DC1 and DC2) instances each running their own VCG client instances;

Á 1 VCG API server;

Á 3 ETH BC mining nodes emulating other DCs in an imaginary CATALYST federation;

Á 2 ETH BC auxiliary nodes needed for bootstrapping the BC and for providing clients and the API server

with enough ETH so that they can perform transactions with the ETH BC.

Figure 8 depicts the above, whereas Figure 9 presents the deployment as seen in the OpenStack VM used

for integration and experimentation purposes in the CATALYST context.

7 If the automated, Docker-based installation is preferred, the dependency injection necessity lies on the Docker context and is directly
satisfied by the provided automation scripts. For manual installations, the identified programming languages and frameworks should be
manually installed.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 45

Figure 8 ð Default experimentation deployment instance.

Figure 9 ð Configuration example of an experimentation deployment residing in an OpenStack VM.

It is worth mentioning that in order to save CPU power, the consensus protocol adopted in the

experimentation has been set to PoA.

5.3.1.1 Installation guidelines

Deployment is made via docker and docker-compose. The steps are as described in the following

paragraphs.

5.3.1.1.1 Deploying the Ethereum miner(sealer) nodes.

First, one needs to download the code handling the automated installation of the dockerized ETH BC test

network:

$ git clone -- recurse - submodules

https://gitlab.com/project - catalyst/VCG/blockchain - testne t.git

Listing 14 ð Getting the code of the dockerized ETH BC test network.

Next, the EXPLORER_EXTERNAL_IP entry inside blockchain - explorer/frontend/.env should be

changed, to match the external IP address for the blockchain-explorer network. Finally, to boot the Docker

containers up, the following commands should be executed successively:

$ cd blockchain - testnet

$ bash scripts/start_containers.sh

Generic
Computational

Environment

VCG
Client

ETH
BC

Node

VCG API
Server

Auxiliary
BC nodesAuxiliary

BC nodes

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 46

Listing 15 ð Booting up the dockerized ETH BC test network.

When the above commands have completed their execution, five containers will have been instantiated, as

detailed in the table below:

Container name Description

geth-bootnode The bootnode that new VCG client nodes connect to when first joining the network

geth-miner-{1,2,3} The sealers on the consortium PoA network

blockchain-explorer The Blockchain visualization dashboard (also includes a geth node)

Table 36 ð Docker containers brought up by the VCG automated deployment scripts.

More details on the deployment of the VCG experimentation blockchain network setup may be found at

https://gitlab.com/project - catalyst/VCG/blockchain - testnet.

5.3.1.1.2 Deploying the VCG API Server

Having deployed the ETH BC test network, the next step is to deploy the VCG API server. Again, the first step

is to download the relevant code fragments:

$ git clone https://gitlab.com/project - catalyst/VCG/api - server.git

Listing 16 ð Getting the code of the VCG API server.

As was the case of the ETH BC test network, the next step is to bring up the relevant container:

$ cd vcg_api_server/c onfig

$ bash launch.sh

Listing 17 ð Booting up the dockerized VCG API Server.

It is worth mentioning that the VCG API Server also hosts a geth node with a provided wallet address. The

wallet address is already populated with ETHER so that the VCG API Server can make transactions as soon

as it is up. Notably, the initial ETHER values are defined in the file blockchain -

testnet/miner/ genesis.json (see the previous installation step at paragraph 5.3.1.1.1). To verify that

the VCG API server has been successfully configured and installed, one may visit the swagger interface of

the component, available at http://<IP>:<PORT>/api/swagger . The view should be similar to Figure 7,

on page 41. In any case, detailed steps on how to deploy the VCG API Server are available online at the

project source code repository at https://gitlab.com/project - catalyst/VCG/api - server .

5.3.1.1.3 Deploying the smart contracts

After the installation of the Docker network and the VCG API Server, the next step is to deploy the CATALYST

DAPPs. To do so, one should first download the relevant code:

$ git clone https://gitlab.com/project - catalyst/VCG/contracts.git

Listing 18 ð Getting the code of the VCG DAPPs.

Next, edit the truffle.js production entry to match the address of the VCG API Server. To deploy the CATALYST

DAPPs, one should simply run:

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 47

$ ACCOUNT_PASSWORD=pwdnode truffle migrate -- network production

Listing 19 ð Booting up the dockerized VCG API Server.

For more details on how install truffle and perform migrations in the event of code updates etc, the interested

reader is requested to refer to the relevant project source code repository available online at

https://gitlab.com/project - catalyst/VCG/contracts .

5.3.1.1.4 Registering the VCG Clients (DC1 & DC2)

To register the two experimental DCs (DC1 and DC2), one should invoke the VCG API Server DC registration

service documented at paragraph 4.3.1.1. The service invocation characteristics should be as tabulated

below:

DC Name DC Wallet
DC1 0x10f683d9acc908ca6b7a34726271229b846b0292

DC2 0x3cf49a570fd253ad0c9b536e5fa8a19c6021d98f

Table 37 ð Details of the dockerized, emulated DCs of the VCG experimentation deployment.

5.3.1.1.5 Deploying the VCG Clients

The last step to complete the experimentation deployment is to install the VCG clients. In order to do so, one

should, again, have to download the relevant code and bring up the relevant docker containers using the

following commands:

$ git clone https://gitlab.com/project - catalyst/VCG/dc - client.git

$ cd vcg_api/config/example

$ docker - compose up - d

Listing 20 ð Getting the code of the VCG DC client and booting up the relevant containers.

After executing the above, both clients will be deployed and eventually connected to the VCG API Server via

WebSocket. More information on the installation of the DC clients may be found at the README file available

at https://gitlab.com/project - catalyst/VCG/dc - client .

 Recommended deployment

Despite the easiness of configuring a minimal experimentation all-in-one deployment, the recommended

deployment option is presented in Figure 10. In short and considering the details provided in the previous

section, two types of installations should be performed, depending on the role of each installation in the

overall CATALYST framework instantiation.

In this context, each CATALYST DC should ideally feature a number (at least one) of Ethereum BC nodes and

an instance of the VCG client. Similarly, for the VCG API Server, a number (at least one) dedicated Ethereum

BC nodes is required, coupled with local installations of the VCG API Server and (optionally) the VCG ETH BC

explorer.

CATALYST.D3.1.POPS.WP3.v1.1

VC Generation & Migration

The CATALYST project has received funding from the European Unionõs

Horizon 2020 research and innovation programme under grant

agreement No 768739.

 48

Figure 10 ð Recommended deployment architecture.

5.3.2.1 Installation guidelines

To perform a complete installation under a recommended deployment perspective, every DC should first

install and configure an ETH node in their DC (see [20] for details and discussion). Next, the VCG client

should be downloaded as per paragraph 5.3.1.1.5. Having installed support for ETH BC and for the VCG

client, the DCO should configure the ETH account of the DC, as follows:

$ cd vcg_api

$ geth account new -- datadir account

Listing 21 ð Ceating a new ETH account for a CATALYST DC.

Next, the account address generated during the previous step and the associated password should be set

inside the vcg_api/.env file. Note that the address generated from the previous step should be prefixed

with "0x" . Further, a unique name for the DC_NAME variable should be also set. Successively, the steps

described in paragraph 5.3.1.1.4 (with the proper address as defined in the previous steps) should be

executed. After all the above steps have been completed, the VCG client should be executed as per the last

two commands of Listing 20.

Definitely, a DC node hosting the CATALYST framework should follow the same steps, however, necessitating

the installation of the VCG API Server and not the VCG DC client ones.

